

Nitrite PP M272

0.01 - 0.3 mg/L N

Diazotation

Instrument specific information

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

Instrument Type	Cuvette	λ	Measuring Range
MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	530 nm	0.01 - 0.3 mg/L N
SpectroDirect, XD 7000, XD 7500	ø 24 mm	507 nm	0.01 - 0.3 mg/L N

Material

Required material (partly optional):

Reagents	Packaging Unit	Part Number
VARIO Nitri 3 F10	Powder / 100 pc.	530980

Application List

- Galvanization
- · Waste Water Treatment
- · Drinking Water Treatment
- · Raw Water Treatment

Determination of Nitrite with Vario Powder Pack

Select the method on the device.

For this method, a ZERO measurement does not have to be carried out every time on the following devices: XD 7000, XD 7500

Fill 24 mm vial with 10 mL Close vial(s). sample.

Place sample vial in the sample chamber. Pay attention to the positioning.

Press the **ZERO** button.

Remove the vial from the sample chamber.

For devices that require no ZERO measurement, start here.

Add Vario Nitri 3 F10 powder pack.

Close vial(s).

Invert several times to mix the contents.

Place **sample vial** in the sample chamber. Pay attention to the positioning.

Test

Wait for 20 minute(s) reaction time.

Once the reaction period is finished, the measurement takes place automatically.

The result in mg/L Nitrite appears on the display.

Analyses

The following table identifies the output values can be converted into other citation forms.

Unit	Cite form	Scale Factor
mg/l	N	1
mg/l	NO ₂	3.2846

Chemical Method

Diazotation

Appendix

Calibration function for 3rd-party photometers

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-2.54687 • 10 ⁻³	-2.54687 • 10 ⁻³
b	1.89212 • 10 ⁻¹	4.06806 • 10-1
С	1.10586 • 10 ⁻²	5.11184 • 10 ⁻²
d		
е		
f		

Interferences

Persistant Interferences

- Strong oxidising and reducing agents interfere at all concentrations.
- 2. Copper and Iron (II) ions may cause lower test results.
- 3. The following ions can produce interferences through precipitation: Antimony, Iron (III), Lead, Gold, Mercury, Silver, Chloroplatinate, Metavanadate and Bismuth.
- At very high concentrations of nitrate (<100 mg/L N) a small amount of nitrite is always detected. This seems to be caused by a minor reduction of nitrate to nitrite, which occurs either spontaneously or over the course of the test.

Derived from

USGS I-4540-85