

 Хлор (свободный) и монохлорамин
 M64

 0.02 - 4.50 mg/L Cl₂
 CL2

Indophenole method

Специфическая информация об инструменте

Тест может быть выполнен на следующих устройствах. Кроме того, указывается требуемая кювета и диапазон поглощения фотометра.

Приборы	Кювета	λ	Диапазон изме- рений
MD 600, MD 610, MD 640, PM 620, PM 630	ø 24 mm	660 nm	0.02 - 4.50 mg/L Cl ₂
XD 7000, XD 7500	ø 24 mm	655 nm	0.02 - 4.50 mg/L Cl ₂

Материал

Необходимый материал (частично необязательный):

Реактивы	Упаковочная единица	Номер заказа
VARIO Free Chlorine Reagent Solution - 30 ml	30 mL	531820
VARIO Monochlor F Rgt - 100	Порошок / 100 Шт.	531810
VARIO Раствор сегнетовой соли, 30 ml ^{h)}	30 mL	530640

Область применения

- Контроль дезинфицирующих средств
- Подготовка питьевой воды
- Контроль воды в бассейне
- Продукты и напитки
- · Others

Примечания

Полноцветное развитие - температура
Периоды реакции, указанные в руководстве, относятся к температуре
образца между 12 °C и 14 °C. В связи с тем, что период реакции сильно
зависит от температуры образца, необходимо регулировать оба периода
реакции в соответствии со следующей таблицей:

Температура образца		Период
°C	°F	реакции х мин
5	41	10
7	45	9
9	47	8
10	50	8
12	54	7
14	57	7
16	61	6
18	64	5
20	68	5
23	73	2.5
25	77	2
> 25	> 77	2

- 2. Нажмите клавишу [Enter], чтобы отменить период реакции.
- 3. Держите бутылку вертикально и медленно сжимайте.
- 4. Для определения концентрации хлора рассчитывается разность между монохлораминами и суммой монохлорамина и хлора. Если одно измеренное значение превышает предел диапазона, на дисплее появляется следующее сообщение:

 $Cl_2[NH_2Cl] + Cl_2 > 4,5 мг/л.$

В этом случае пробу необходимо разбавить и повторить измерение.

Выполнение определения Диоксид хлора в присутствии хлора с использованием таблетки

Выберите метод в устройстве.

Также выберите определение: в присутствии хлора.

24-Наполните кювету -мм 10 пробой мл.

Закройте кювету(ы).

Поместите кювету для проб в измерительную шахту. Обращайте внимание на позиционирование.

Нажмите клавишу НОЛЬ.

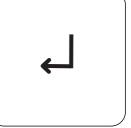
Извлеките кювету из измерительной шахты.

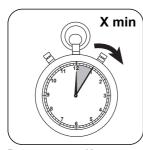
Добавьте 5 капли Free **Chlorine Reagent Solution** в кювету для проб.

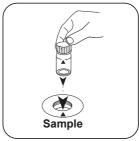
Закройте кювету(ы).

Перемешайте содержимое покачиванием (15 sec.).

Добавьте упаковку порошка Monochlor FRGT.




Закройте кювету(ы).


Растворите реагент взбалтыванием. (20 sec.)

Нажмите клавишу **ENTER** . (XD: Запуск таймера)

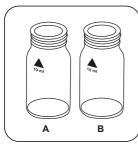
Время реакции **X** мин согласно таблице. **Дождитесь периода** реакции.



Поместите кювету для проб в измерительную шахту. Обращайте внимание на позиционирование.

Нажмите клавишу **TECT** (XD: **CTAPT**).

На дисплее отображается результат в мг/л Свободный хлор.



Выполнение определения свободный хлор и монохлорамин

Выберите метод в устройстве.

Также выберите определение: Свободный хлор.

Для этого метода необязательно проводить измерение НУЛЯ каждый раз на следующих устройствах: без хлора

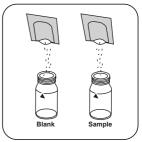
Подготовьте два чистых флакона диаметром 24 мм. Пометьте один флакон как Хлорамин, а другой как Хлор.

Добавьте **10 мл пробы** в каждую кювету.

Поместите **кювету** Хлорв измерительную шахту. Обращайте внимание на позиционирование.

Нажмите клавишу НОЛЬ.

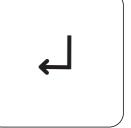
Извлеките кювету из измерительной шахты.

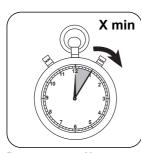

Добавьте **5 капли Free Chlorine Reagent Solution**в кювету **Хлор**.

Закройте кювету(ы).

Перемешайте содержимое покачиванием (около 15 сек).

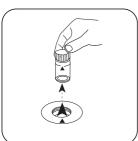
Добавьте одновременно в каждый флакон порошок **Monochlor FRGT.**




Закройте кювету(ы).

Растворите реагент взбалтыванием. (20 сек)

Нажмите клавишу **ENTER** . (XD: Запуск таймера)


Время реакции **X** мин согласно таблице. **Дождитесь периода** реакции.

Поместите кювету Хлораминв измерительную шахту. Обращайте внимание на позиционирование.

Нажмите клавишу **TECT** (XD: **CTAPT**).

Извлеките кювету из измерительной шахты.

Поместите **кювету** Хлорв измерительную шахту. Обращайте внимание на позиционирование.

Нажмите клавишу **TECT** (XD: **CTAPT**).

На дисплее отображается результат в мг/л Хлор и мг/л Монохлорамин - хлор Cl [NH $_2$ Cl].

Оценка

В следующей таблице указаны выходные значения, которые могут быть преобразованы в другие формы цитирования.

единицах	Форма цитирования	коэффициент преобра- зования
mg/l	Cl ₂	1
mg/l	NH₂CI	0.72598
mg/l	N[NH ₂ CI]	0.19754
mg/l	NH₃	0.24019

Химический метод

Indophenole method

Функция калибровки для фотометров сторонних производителей

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm
а	-5,8124 · 10 ⁻²	-5,8124 · 10 ⁻²
b	1.80357 · 10°	3.87768 · 10°
С	-	-
d	-	-
е	-	-
f	-	-

Нарушения

Исключаемые нарушения

Нарушения, вызванные осаждением из-за жесткости CaCO₃ по магнию более 400 мг / л, можно устранить, добавив 5 капель раствора соли Рошель.

Помехи	от / [мг/л]
Alanine (N)	1
Aluminium (AI)	10
Bromide (Br)	100
Bromine (Br ₂)	15
Calcium (CaCO₃)	1000

Помехи	от / [мг/л]
Chloride (Cl ⁻)	18.000
Chlorine Dioxide (ClO ₂)	5
Copper (Cu)	10
Dichloramine (Cl ₂)	10
Fluoride (F ⁻)	5
Glycine (N)	1
Iron (II) (Fe ²⁺)	10
Iron (III) (Fe³+)	10
Lead (Pb)	10
Permanganate	3
Nitrate (N)	100
Nitrite (N)	50
Sulfide	0.5
Phosphate (PO ₄)	100
Silica (SiO ₂)	100
Sulfate (SO ₄ ²⁺)	2600
Sulfite (SO ₃ ²⁻)	50
Ozone	1
Tyrosine (N)	1
Urea (N)	10
Zinc (Zn)	5

Проверка метода

Предел обнаружения	0.010 mg/L
Предел детерминации	0.03 mg/L
Конечное значение диапазона измерений	4.5 mg/L
Восприимчивость	1.78 mg/L / Abs
Доверительная область	0.044 mg/L
Среднеквадратическое откло- нение процесса	0.018 mg/L
Коэффициент вариации метода	0.78 %