Instrument specific information

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Cuvette</th>
<th>λ</th>
<th>Measuring Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD 600, MD 610, MD 640, XD 7000, XD 7500</td>
<td>ø 24 mm</td>
<td>560 nm</td>
<td>0.03 - 2 mg/l Fe</td>
</tr>
</tbody>
</table>

Material

Required material (partly optional):

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Packaging Unit</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron LR 2 Reagent Set</td>
<td>1 pc.</td>
<td>56R023490</td>
</tr>
<tr>
<td>KS135 Pa1/Alk1-Phenolphthalein Sub-Alk P</td>
<td>30 ml</td>
<td>56L013530</td>
</tr>
<tr>
<td>KS135 Pa1/Alk1-Phenolphthalein Sub-Alk P</td>
<td>65 ml</td>
<td>56L013565</td>
</tr>
<tr>
<td>KS135 Pa1/Alk1-Phenolphthalein Sub-Alk P</td>
<td>500 ml</td>
<td>56L013597</td>
</tr>
<tr>
<td>KS135 Pa1/Alk1-Phenolphthalein Sub-Alk P - pck of 5</td>
<td>1 pc.</td>
<td>56L013572</td>
</tr>
<tr>
<td>KS144-CH2-FC4-Calcium Hardness Buffer</td>
<td>65 ml</td>
<td>56L014465</td>
</tr>
<tr>
<td>KS144-CH2-FC4-Calcium Hardness Buffer</td>
<td>65 ml</td>
<td>56L014472</td>
</tr>
<tr>
<td>KS144-CH2-FC4-Calcium Hardness</td>
<td>125 ml</td>
<td>56L014491</td>
</tr>
<tr>
<td>KP962-Ammonium Persulphate Powder</td>
<td>Powder / 40 g</td>
<td>56P096240</td>
</tr>
</tbody>
</table>

Application List

- Cooling Water
- Boiler Water
- Galvanization
- Raw Water Treatment
Preperation

1. If there are strong complexing agents in the sample, the response time must be extended until no further colour development is seen. However, very strong iron complexes are not included in the measurement. In this event, the complexing agent must be destroyed by means of oxidation with acid/persulphate and the sample also neutralised to pH 6–9.

2. For the measurement of total iron, both suspended and dissolved, the sample must be boiled with acid/persulphate. It must be neutralised back to pH 6–9 and refilled to the original volume with deionised water.

Notes

1. Do not add the reagent KS63 (Thioglycolate) if measuring Fe²⁺.
Digestion

Total iron consists of suspended, soluble and complexed iron. The sample must be not filtered before measuring. To ensure homogenisation of the sample, deposed particles must be evenly distributed immediately prior to sampling by forcible shaking. A filtration of the sample is necessary for the determination of total soluble iron (including the complex iron compounds). The equipment required for the determination of total iron and reagents are not included in the standard delivery.

Fill a suitable digestion vessel with **50 ml homogenised sample**.

Add **5 ml 1:1 Hydrochloric acid**.

Add a measuring scoop **KP 962 (Ammonium Persulfate Powder)**.

Boil the sample for **20 minutes**. A sample volume of about **25 ml** should be retained; if necessary, fill with deionised water.

Allow the sample to cool to room temperature.

Hold cuvettes vertically and add equal drops by pressing slowly.
Add 1 drops KS135 (Phenolphthalein Substitute Indikator).

Add KS 144 (Calcium Hardness Buffer) drop by drop to the same sample until colouration turns from light pink to red. (Note: make sure to swirl the vial after adding each drop!)

Fill the sample with deionised water to 50 ml.
Implementation of the provision Iron LR (B) with Liquid Reagent

Select the method on the device
For this method, no ZERO measurements are to be carried out with the following devices: XD 7000, XD 7500
For determination of total dissolved iron with a distinction between Fe$^{2+}$ and Fe$^{3+}$ the sample must be filtered prior to the test (pore size 0.45 μm). Otherwise, iron particles and suspended iron are measured.

10 ml

Fill 24 mm vial with **10 ml sample**.

Close vial(s).

Place **sample vial** in the sample chamber. • Pay attention to the positioning.

Zero

Press the **ZERO** button.

Remove the vial from the sample chamber.

For devices that require **no ZERO measurement**, start here.

Hold cuvettes vertically and add equal drops by pressing slowly.

Add **10 drops KS60 (Acetate Buffer)**.

Close vial(s).
Invert several times to mix the contents.

Add **10 drops KS63 (Thioglycolate)**.

Close vial(s).

Invert several times to mix the contents.

Add **10 drops KS65 (Ferrozine)**.

Close vial(s).

Invert several times to mix the contents.

Place **sample vial** in the sample chamber. • Pay attention to the positioning.

Press the **TEST (XD: START)** button.
Wait for 5 minute(s) reaction time.

Once the reaction period is finished, the measurement takes place automatically. The result in mg/l Fe2+/Fe3+. Fe3+ = Fe2+/3+ - Fe2+ appears on the display.
Implementation of the provision Iron, total LR 2 with liquid reagent

Select the method on the device
For testing of **Iron, total LR with liquid reagent**, carry out the described digestion. For this method, no ZERO measurements are to be carried out with the following devices: XD 7000, XD 7500

Total iron consists of suspended, soluble and complexed iron. The sample must be not filtered before measuring. To ensure homogenisation of the sample, deposed particles must be evenly distributed immediately prior to sampling by forcible shaking. A filtration of the sample is necessary for the determination of total soluble iron (including the complex iron compounds). The equipment required for the determination of total iron and reagents are not included in the standard delivery.

10 ml

- Fill 24 mm vial with **10 ml deionised water**.
- Close vial(s).
- Place **sample vial** in the sample chamber. • Pay attention to the positioning.

Zero

- Press the **ZERO** button.
- Remove the vial from the sample chamber.
- Empty vial.

For devices that require **no ZERO measurement**, start here.
Fill 24 mm vial with **10 ml prepared sample**.

Hold cuvettes vertically and add equal drops by pressing slowly.

Add **10 drops KS60 (Acetate Buffer)**.

Close vial(s).

Invert several times to mix the contents.

Add **10 drops KS63 (Thioglycolate)**.

Close vial(s).

Invert several times to mix the contents.

Add **10 drops KS65 (Ferrozine)**.

Close vial(s).

Invert several times to mix the contents.

Place **sample vial** in the sample chamber. • Pay attention to the positioning.
Press the TEST (XD: START) button. Wait for 5 minute(s) reaction time. Once the reaction period is finished, the measurement takes place automatically. The result in mg/l total iron or when using a filtrated sample, in mg/l total soluble iron appears on the display.
Chemical Method
Ferrozine / Thioglycolate

Appendix

Calibration function for 3rd-party photometers
Conc. = a + bAbs + cAbs^2 + dAbs^3 + eAbs^4 + fAbs^5

<table>
<thead>
<tr>
<th></th>
<th>ø 24 mm</th>
<th>□ 10 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-2.46542 \times 10^{-2}</td>
<td>-2.46542 \times 10^{-2}</td>
</tr>
<tr>
<td>b</td>
<td>1.04803 \times 10^0</td>
<td>2.25326 \times 10^0</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interferences

Removeable Interferences
1. If using KS63 (Ferrozine/Thioglycolate), a high concentration of molybdate will result in an intense yellow colour. In this instance, a chemical blank value is required:
 - Use two clean 24 mm vials.
 - Mark one as blank for zeroing.
 - Fill a clean vial (24 mm) with 10 ml of the sample (blank).
 - Add 10 drops of KS63 (Thioglycolate) to the vial.
 - Close the vial with the cap and swirl the contents to mix them.
 - Place the blank in the sample chamber. Pay attention to the positioning.
 - Press the ZERO button.
 - Remove the vial from the sample chamber.
 - Fill a second clean vial (24 mm) with 10 ml of the sample (this is the sample vial).
 - Add 10 drops of KS60 (Actate Buffer) and as before, follow the procedure as described.
Interference from / [mg/l]

<table>
<thead>
<tr>
<th>Interferent</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>8</td>
</tr>
<tr>
<td>Cu</td>
<td>2</td>
</tr>
<tr>
<td>Oxalat</td>
<td>500</td>
</tr>
<tr>
<td>CN</td>
<td>10</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td></td>
</tr>
</tbody>
</table>

Bibliography