Bariumsulphate Turbidity

Instrument specific information

The test can be performed on the following devices. In addition, the required cuvette and the absorption range of the photometer are indicated.

Instrument Type	Cuvette	$\boldsymbol{\lambda}$	Measuring Range
MD 600, MD 610, MD 640,	$\varnothing 24 \mathrm{~mm}$	610 nm	$5-100 \mathrm{mg} / \mathrm{L} \mathrm{SO}_{4}{ }^{2-}$
MultiDirect, PM 620, PM 630, XD 7000, XD 7500			

Material

Required material (partly optional):

Reagents	Packaging Unit	Part Number
Sulfate Turbidity	Tablet / 100	515450BT
Sulfate Turbidity	Tablet / 250	515451BT

Application List

- Waste Water Treatment
- Cooling Water
- Drinking Water Treatment
- Raw Water Treatment

Notes

1. Sulphate causes a finely distributed turbidity with a milky appearance.

Determination of Sulphate with Tablet

Select the method on the device.
For this method, a ZERO measurement does not have to be carried out every time on the following devices: XD 7000, XD 7500

Fill 24 mm vial with $10 \mathrm{~mL} \quad$ Close vial(s). sample.

Place sample vial in the sample chamber. Pay atten-
 tion to the positioning.

Press the ZERO button.
Remove the vial from the sample chamber.

For devices that require no ZERO measurement, start here.

Dissolve tablet(s) by inverting.

Wait for 2 minute(s) reaction time.

Once the reaction period is finished, the measurement takes place automatically.
The result in mg / L Sulphate appears on the display.

Chemical Method

Bariumsulphate Turbidity

Appendix

Calibration function for 3rd-party photometers

Conc. $=\mathrm{a}+\mathrm{b} \cdot \mathrm{Abs}+\mathrm{c} \cdot \mathrm{Abs}^{2}+\mathrm{d} \cdot \mathrm{Abs}^{3}+\mathrm{e} \cdot \mathrm{Abs}^{4}+\mathrm{f} \cdot \mathrm{Abs}^{5}$

	$\boldsymbol{ø} \mathbf{2 4 ~ m m}$	$\square \mathbf{1 0 ~ m m ~}$
a	$3.70245 \cdot 10^{+0}$	$3.70245 \cdot 10^{+0}$
b	$1.39439 \cdot 10^{+2}$	$2.99793 \cdot 10^{+2}$
c		
d		
e		
f		

Derived from
DIN ISO 15923-1 D49

