

Fer (TPTZ) PP	M223
0.02 - 1.8 mg/L Fe	FE2
TPTZ	

Informations spécifiques à l'instrument

Le test peut être effectué sur les appareils suivants. De plus, la cuvette requise et la plage d'absorption du photomètre sont indiquées.

Appareils	Cuvette	λ	Gamme de mesure
MD 100, MD 600, MD 610, MD 640, MultiDirect	ø 24 mm	580 nm	0.02 - 1.8 mg/L Fe
SpectroDirect	ø 24 mm	590 nm	0.1 - 1.8 mg/L Fe
XD 7000, XD 7500	ø 24 mm	590 nm	0.02 - 1.8 mg/L Fe

Matériel

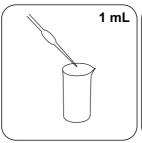
Matériel requis (partiellement optionnel):

Réactifs	Pack contenant	Code
VARIO Fer TPTZ F10	Poudre /	530550
	100 Pièces	

Liste d'applications

- · Traitement des eaux usées
- · Eau de refroidissement
- · Eau de chaudière
- Galvanisation
- · Traitement de l'eau potable
- · Traitement de l'eau brute

Préparation


- La quantification du fer total nécessite un fractionnement. Le réactif TPTZ détecte la plupart des oxydes de fer sans fractionnement.
- Avant l'analyse, lavez tous les instruments en verre en utilisant une solution d'acide chlorhydrique diluée (1:1) puis rincez-les à l'eau déminéralisée afin d'éliminer les dépôts de fer susceptibles d'augmenter légèrement les résultats.
- Avant l'analyse, les eaux fortement alcalines ou acides devraient être ajustées sur un pH compris entre 3 et 8 (avec 0,5 mol/l d'acide sulfurique ou 1 mol/l de soude caustique).
- 4. Il faudra éventuellement oxyder les eaux auparavant traitées avec des composés organiques pour les protéger de la corrosion etc. afin de détruire les complexes du fer. À un échantillon de 100 ml, on ajoutera 1 ml d'acide sulfurique concentré et 1 ml d'acide nitrique concentré pour réduire le tout de moitié par évaporation. Le fractionnement est effectué après le refroidissement.

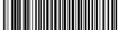
Fractionnement

Versez **100 mL d'échantillon** dans un tube pour échantillon adéquat.

Ajoutez 1 mL de d'acide sulfurique concentré .

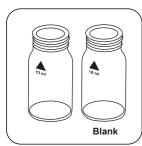
Réchauffez l'échantillon pendant **10 minutes**, ou jusqu'à ce que tout soit entièrement dissous.

Laissez refroidir l'échantillon à **température ambiante**.



Réglez le pH de l'échantillon avec solution ammoniaquée pour obtenir 3-5.

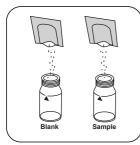
Complétez l'échantillon en ajoutant d'eau déminéralisée pour obtenir 100 mL .


Utilisez cet échantillon pour analyser Fer total résolu et dissous.

Réalisation de la quantification Fer, total avec sachet de poudre Vario

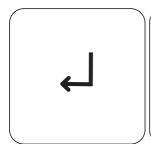
Sélectionnez la méthode sur l'appareil.

Pour la quantification de Fer total, procédez au fractionnement décrit .

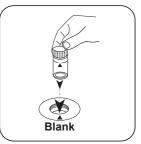

Préparez deux cuvettes propres de 24 mm. L'une des deux cuvettes sera la cuvette du blanc. Étiquetezla.

néralisée dans la cuvette du blanc

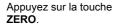
Versez 10 mL d'eau démi- Versez 10 mL d'échantillon dans la cuvette réservée à l'échantillon


Dans chaque cuvette. versez un sachet de poudre Vario IRON TPTZ F10.

Fermez la(les) cuvette(s).


Mélangez le contenu en agitant (30 sec.).

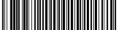
Appuyez sur la touche ENTER


réaction de 3 minute(s).

Attendez la fin du temps de Placez la cuvette du blanc dans la chambre de mesure. Attention à la positionner correctement.



Retirez la cuvette de la chambre de mesure.



Placez la cuvette réservée à l'échantillon dans la chambre de mesure. Attention à la positionner correctement.

Test

Appuyez sur la touche **TEST** (XD: **START**).

Le résultat s'affiche à l'écran en mg/L fer.

Méthode chimique

TPTZ

Appendice

Fonction de calibrage pour les photomètres de tiers

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm	
а	-2.07334 • 10 ⁻²	-2.07334 • 10 ⁻²	
b	1.26944 • 10+0	2.7293 • 10+0	
С			
d			
е			
f			

Interférences

Interférences persistantes

En cas de perturbation, la coloration est bloquée ou il se forme un précipité. Les indications s'appuient sur un étalon caractérisé par une concentration de fer égale à 0,5 mg/L.

Interférences	de / [mg/L]
Cd	4
Cr ³⁺	0.25
Cr ⁶⁺	1.2
Со	0.05
Cu	0.6
CN ⁻	2.8
Mn	50
Hg	0.4
Mo	4
Ni	1
NO ₂ ·	0.8

Bibliographie

G. Frederic Smith Chemical Co., The Iron Reagents, 3rd ed. (1980)