

TN LR 2 TT M283

0.5 - 14 mg/L N^{b)}

2,6-Diméthylphénole

Informations spécifiques à l'instrument

Le test peut être effectué sur les appareils suivants. De plus, la cuvette requise et la plage d'absorption du photomètre sont indiquées.

Appareils	Cuvette	λ	Gamme de mesure
SpectroDirect, XD 7000, XD 7500	ø 16 mm	340 nm	0.5 - 14 mg/L N ^{b)}

Matériel

Matériel requis (partiellement optionnel):

Réactifs	Pack contenant	Code
Azote total DMP LR / 25	1 Pièces	2423540
Azote total	1 Pièces	2420703

Les accessoires suivants sont requis.

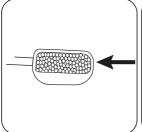
Accessoires	Pack contenant	Code
Thermoréacteur RD 125	1 Pièces	2418940

Liste d'applications

- · Traitement des eaux usées
- · Traitement de l'eau potable
- · Traitement de l'eau brute

Indication

 Ce test permet de détecter les composés inorganiques ammonium, nitrate et nitrite ainsi que les composés organiques comme les acides aminés, l'urée, les séquestrants etc.

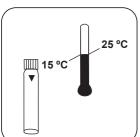


Fractionnement

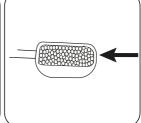
Versez 5 mL d'échantillon dans la cuvette de fractionnement.

Ajoutez une cuiller de mesure rase de No. 8 (noir) Digestion Reagent.

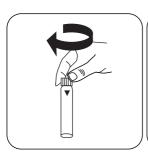
Fermez la(les) cuvette(s).

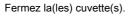

Mélangez le contenu en mettant le tube plusieurs fois à l'envers puis à l'endroit.

Fractionnez la(les) cuvette(s) dans un thermoréacteur préchauffé pendant 60 minutes à 100 °C .


Retirez la cuvette du thermoréacteur. (Attention : la cuvette est très chaude!)

Laissez refroidir l'échantillon à **température ambiante**.




Mélangez le contenu en mettant le tube plusieurs fois à l'envers puis à l'endroit.

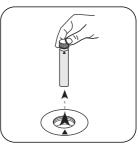
Ajoutez une cuiller de mesure rase de No. 4 (blanc) Compensation Reagent.

Mélangez le contenu en mettant le tube plusieurs fois à l'envers puis à l'endroit.

Réalisation de la quantification Azote, total LR avec test à cuve

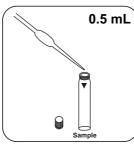
Sélectionnez la méthode sur l'appareil.

Pour la quantification de Azote, total LR avec test de cuvette, procédez au fractionnement décrit .


Pour cette méthode, il n'est pas nécessaire d'effectuer une mesure ZERO à chaque fois sur les appareils suivants : XD 7000, XD 7500

Placez la cuvette du blanc fourni (autocollant rouge) dans la chambre de mesure. Attention à la positionner correctement.

Appuyez sur la touche **ZERO**.



Retirez la **cuvette** de la chambre de mesure.

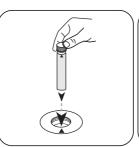
Sur les appareils ne nécessitant aucune mesure ZÉRO, commencez ici.

Ouvrez une cuvette de réactif

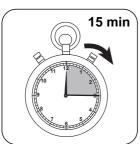
Versez 0.5 mL d'échantillon fractionné, préparé dans la cuvette réservée à l'échantillon

Fermez la(les) cuvette(s).

Mélangez soigneusement le contenu en mettant prudemment le tube à l'envers puis à l'endroit. Attention : Développement de chaleur!


Ajoutez 0.2 mL de Nitrate-111 .

Fermez la(les) cuvette(s).


Mélangez le contenu en mettant le tube plusieurs fois à l'envers puis à l'endroit.

Placez la **cuvette réservée** à **l'échantillon** dans la chambre de mesure. Attention à la positionner correctement.

Appuyez sur la touche **TEST** (XD: **START**).

Attendez la fin du temps de réaction de 15 minute(s).

À l'issue du temps de réaction, la mesure est effectuée automatiquement.

Le résultat s'affiche à l'écran en mg/L Azote.

Analyses

Le tableau suivant identifie les valeurs de sortie qui peuvent être converties en d'autres formes de citation.

Unité	Formes de citation	Facteur de conversion
mg/l	N	1
mg/l	NH ₄	1.288
mg/l	NH ₃	1.2158

Méthode chimique

2,6-Diméthylphénole

Appendice

Fonction de calibrage pour les photomètres de tiers

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 16 mm
а	2.35054 • 10 ⁻¹
b	1.92879 • 10 ⁺²
С	
d	
е	
f	

Interférences

Interférences persistantes

 Les composés d'azote difficilement oxydables, tels qu'on peut les trouver dans les eaux industrielles et commerciales usées, ne sont pas fractionnés ou uniquement en partie.

Bibliographie

 ISO 23697-1, Water quality — Determination of total bound nitrogen (ST-TNb) in water using small-scale sealed tubes — Part 1: Dimethylphenol colour reaction

Selon

US EPA 40 CFR 141

Dérivé de EN ISO 11905-1

^b/Réacteur nécessaire pour DCO (150 °C), COT (120 °C), chrome total, phosphate total, azote total, (100 °C)