

Ozon TM300 $0,02 - 2 \text{ mg/L O}_3$ O3DPD / Glycin

Instrumentspezifische Informationen

Der Test kann auf den folgenden Geräten durchgeführt werden. Zusätzlich sind die benötigte Küvette und der Absorptionsbereich der Photometer angegeben.

Geräte	Küvette	λ	Messbereich
MD 100, MD 110, MD 200, MD 600, MD 610, MD 640, MultiDirect, PM 600, PM 620, PM 630	ø 24 mm	530 nm	0,02 - 2 mg/L O ₃
XD 7000, XD 7500	ø 24 mm	510 nm	0,02 - 2 mg/L O ₃
SpectroDirect	ø 24 mm	510 nm	0,02 - 1 mg/L O ₃

Material

Benötigtes Material (zum Teil optional):

Reagenzien	Form/Menge	Bestell-Nr.
DPD No.1	Tablette / 100	511050BT
DPD No. 1	Tablette / 250	511051BT
DPD No. 1	Tablette / 500	511052BT
DPD No. 3	Tablette / 100	511080BT
DPD No. 3	Tablette / 250	511081BT
DPD No. 3	Tablette / 500	511082BT
DPD No. 1 High Calcium ^{e)}	Tablette / 100	515740BT
DPD No. 1 High Calcium ^{e)}	Tablette / 250	515741BT
DPD No. 1 High Calcium ^{e)}	Tablette / 500	515742BT
DPD No. 3 High Calcium ^{e)}	Tablette / 100	515730BT
DPD No. 3 High Calcium ^{e)}	Tablette / 250	515731BT
DPD No. 3 High Calcium ^{e)}	Tablette / 500	515732BT
Glycine ⁹	Tablette / 100	512170BT
Glycine ⁹	Tablette / 250	512171BT
Set DPD No. 1/No. 3#	je 100	517711BT
Set DPD No. 1/No. 3#	je 250	517712BT
Set DPD No. 1/No. 3 High Calcium#	je 100	517781BT
Set DPD No. 1/No. 3 High Calcium#	je 250	517782BT
Set DPD No. 1/Glycine #	je 100	517731BT
Set DPD No. 1/Glycine #	je 250	517732BT

Anwendungsbereich

- · Trinkwasseraufbereitung
- Kesselwasser
- · Abwasserbehandlung
- · Rohwasserbehandlung
- · Desinfektionsmittelkontrolle

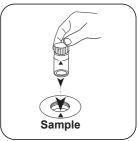
Vorbereitung

- 1. Reinigung der Küvetten:
 - Da viele Haushaltsreiniger (z.B. Geschirrspülmittel) reduzierende Stoffe enthalten, kann es bei der nachfolgenden Bestimmung von Oxidationsmitteln (z.B. Ozon, Chlor) zu Minderbefunden kommen. Um diesen Messfehler auszuschließen, sollten die Glasgeräte chlorzehrungsfrei sein. Dazu weden die Glasgeräte für eine Stunde unter Natriumhypochloritlösung (0,1 g/L) aufbewahrt und danach gründlich mit VE-Wasser gespült.
- Bei der Probenvorbereitung muss das Ausgasen von Ozon, z.B. durch Pipettieren und Schütteln vermieden werden. Die Analyse muss unmittelbar nach der Probennahme erfolgen.
- Stark alkalische oder saure Wässer müssen vor der Analyse in einen pH-Bereich zwischen 6 und 7 gebracht werden (mit 0,5 mol/l Schwefelsäure bzw. 1 mol/l Natronlauge).

Durchführung der Bestimmung Ozon, neben Chlor mit Tablette

Die Methode im Gerät auswählen.

Wählen Sie zudem die Bestimmung: neben Chlor


Für diese Methode muss bei folgenden Geräten nicht jedes mal eine ZERO-Messung durchgeführt werden: XD 7000, XD 7500

24-mm-Küvette mit 10 mL Probe füllen.

Küvette(n) verschließen.

Die **Probenküvette** in den Messschacht stellen. Positionierung beachten.

Taste **ZERO** drücken.

Küvette aus dem Messschacht nehmen.

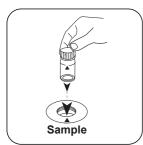
Die Küvette bis auf einige Tropfen entleeren.

Bei Geräten, die keine ZERO-Messung erfordern, hier beginnen.

Eine **DPD No. 1 Tablette** zugeben.

Eine **DPD No. 3 Tablette** zugeben.

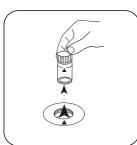
Tablette(n) unter leichter Drehung zerdrücken.


Küvette bis zur 10-mL-Marke mit der Probe auffüllen.

Küvette(n) verschließen.


Tablette(n) durch Umschwenken lösen.

Die **Probenküvette** in den Messschacht stellen. Positionierung beachten.



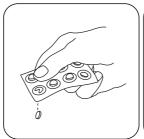
Taste **TEST** (XD: **START**) drücken.

2 Minute(n) Reaktionszeit abwarten.

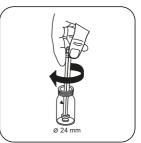
Nach Ablauf der Reaktionszeit erfolgt automatisch die Messung.

Küvette aus dem Messschacht nehmen.

Küvette entleeren.



Die Küvette und den Küvettendeckel gründlich reinigen.



Eine zweite Küvette mit 10 mL Probe füllen.

Eine **GLYCINE Tablette** zugeben.

Tablette(n) unter leichter Drehung zerdrücken.

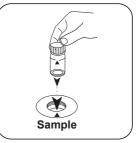

Küvette(n) verschließen.

Tablette(n) durch Umschwenken lösen.

Eine DPD No. 1 Tablette und eine DPD No. 3 Tablette direkt aus der Folie in die erste Küvette geben.

Tablette(n) unter leichter Drehung zerdrücken.

Die vorbereitete **Glycinlösung** in die vorbereitete Küvette füllen.



Küvette(n) verschließen.

Tablette(n) durch Umschwenken lösen.

Die **Probenküvette** in den Messschacht stellen. Positionierung beachten.

Taste **TEST** (XD: **START**) drücken.

2 Minute(n) Reaktionszeit abwarten.

Nach Ablauf der Reaktionszeit erfolgt automatisch die Messung.

In der Anzeige erscheint das Ergebnis in mg/L Ozon; mg/l Gesamtchlor.

Durchführung der Bestimmung Ozon, in Abwesenheit von Chlor mit Tablette

Die Methode im Gerät auswählen.

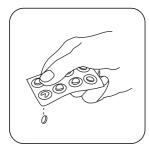
Wählen Sie zudem die Bestimmung: ohne Chlor

Für diese Methode muss bei folgenden Geräten nicht jedes mal eine ZERO-Messung durchgeführt werden: XD 7000, XD 7500

24-mm-Küvette mit 10 mL Küvette(n) verschließen. Probe füllen.

Die Probenküvette in den Messschacht stellen. Positionierung beachten.

Taste **ZERO** drücken.



Küvette aus dem Messschacht nehmen.

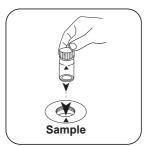
Die Küvette bis auf einige Tropfen entleeren.

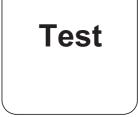
Bei Geräten, die keine ZERO-Messung erfordern, hier beginnen.

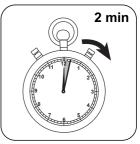
Eine DPD No. 1 Tablette zugeben.

Eine DPD No. 3 Tablette zugeben.

Tablette(n) unter leichter Drehung zerdrücken.


Küvette bis zur 10-mL-Marke mit der Probe auffüllen.


Küvette(n) verschließen.


Tablette(n) durch Umschwenken lösen.

Die **Probenküvette** in den Messschacht stellen. Positionierung beachten.

Taste **TEST** (XD: **START**) drücken.

2 Minute(n) Reaktionszeit abwarten.

Nach Ablauf der Reaktionszeit erfolgt automatisch die Messung.

In der Anzeige erscheint das Ergebnis in mg/L Ozon.

Auswertung

Die folgende Tabelle gibt an wie die ausgegebenen Werte in andere Zitierformen umgewandelt werden können.

Einheit	Zitierform	Umrechnungsfaktor
mg/l	O ₃	1
mg/l	Cl ₂	1.4771

Chemische Methode

DPD / Glycin

Appendix

Kalibrierfunktion für Photometer von Fremdherstellern

Conc. = $a + b \cdot Abs + c \cdot Abs^2 + d \cdot Abs^3 + e \cdot Abs^4 + f \cdot Abs^5$

	ø 24 mm	□ 10 mm	
а	-2.13541 • 10 ⁻²	-2.13541 • 10 ⁻²	
b	1.19361 • 10⁺⁰	2.56626 • 10+0	
С	-8.66457 • 10 ⁻²	-4.0052 • 10 ⁻¹	
d	9.31084 • 10-2	9.25346 • 10 ⁻¹	_
е			
f			

Störungen

Permanente Störungen

- Alle in den Proben vorhandenen Oxidationsmittel reagieren wie Chlor, was zu Mehrbefunden führt.
- Konzentrationen über 6 mg/L Ozon können zu Ergebnissen innerhalb des Messbereiches bis hin zu 0 mg/L führen. In diesem Fall ist die Wasserprobe zu verdünnen.
 10 ml der verdünnten Probe werden mit Reagenz versetzt und die Messung wiederholt (Plausibilitätstest).

Literaturverweise

Colorimetric Chemical Analytical Methods, 9th Edition, Lovibond

Abgeleitet von

DIN 38408-3:2011-04

^{e)} Hilfsreagenz, alternativ zur DPD No. 1 / No. 3 bei Eintrübungen der Probe durch hohen Calciumionengehalt und/ oder hohe Leitfähigkeit | ⁶ Hilfsreagenz, wird zusätzlich für die Bestimmung Brom, Chlordioxid bzw. Ozon benötigt bei Anwesenheit von Chlor | * inklusive Rührstab